DEFINING EXPONENTIAL FUNCTIONS VIA LIMITS

STEVE FAN

Abstract. In this short note we prove a few classical properties of the exponential function e^{x} from the simple definition

$$
e^{x}:=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

This note is a result of the author's curiosity in exploring and possibly teaching e^{x} from a different point of view.

1. The Exponential Function e^{x}

In standard calculus textbooks, the exponential function e^{x} is defined by

$$
\begin{equation*}
e^{x}:=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}$. The continuity of e^{x} then follows from the uniform convergence of the power series that defines it on closed and bounded intervals. Similarly, one can show that e^{x} is differentiable everywhere. An alternative way of defining e^{x} is by considering the following initial value problem

$$
\begin{aligned}
\frac{d}{d x} f(x) & =f(x) \\
f(0) & =1
\end{aligned}
$$

One defines e^{x} to be the unique solution $f(x)$ to this problem. One of the advantages of this approach is that one has the differentiability of e^{x} for free. However, there is a third method when it comes to defining e^{x}. It is well known that the constant e is commonly defined by

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

It is hence natural to define e^{x} by

$$
\begin{equation*}
e^{x}:=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} . \tag{2}
\end{equation*}
$$

This definition was introduced by L. Euler [2] who actually derived the power series expansion (1) from it (in a somewhat unrigorous way). Using Bernoulli's inequality that $(1+x)^{n}>$ $1+n x$ holds for all positive integers $n \geq 2$ and all nonzero $x>-1$, it is not hard to show that for every $x \in \mathbb{R} \backslash\{0\}$, the sequence $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$ defined by

$$
a_{n}(x):=\left(1+\frac{x}{n}\right)^{n}
$$

is strictly increasing for $n>\max (0,-x)$. It is also not hard to prove that the sequence $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$ is bounded for every fixed $x \in \mathbb{R}$. Indeed, let us fix $x \in \mathbb{R}$ and denote by m the
least positive integer greater than or equal to $|x|$. Then for sufficiently large n, we have

$$
\left|a_{n}(x)\right| \leq\left(1+\frac{m}{n}\right)^{n} \leq\left(1+\frac{m}{m n}\right)^{m n}=\left(1+\frac{1}{n}\right)^{m n}
$$

where we have used the monotonicity of $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$. Since

$$
\left(1+\frac{1}{n}\right)^{n}=2+\sum_{k=2}^{n}\binom{n}{k} \frac{1}{n^{k}} \leq 2+\sum_{k=2}^{n} \frac{1}{k!}<2+\sum_{k=2}^{n} \frac{1}{k(k-1)}=3-\frac{1}{n}
$$

it follows that

$$
\left|a_{n}(x)\right| \leq\left(3-\frac{1}{n}\right)^{m}
$$

for all sufficiently large n. This proves that $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$ is bounded for every fixed $x \in \mathbb{R}$. Here the treatment for $(1+1 / n)^{n}$ is classical. However, the author discovered a slightly different way to prove that the sequence $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$ is bounded for every fixed $x \in \mathbb{R}$. The starting point is another simple inequality due to Bernoulli:

$$
(1+x)^{n} \leq \frac{1}{1-n x}
$$

where n is a positive integer and $x \in(-1,1 / n)$. This inequality can be proved easily by induction. As a consequence of this inequality, we have

$$
\left|a_{n}(x)\right| \leq\left(1+\frac{m}{n}\right)^{n} \leq\left(1+\frac{2 m}{2 m n}\right)^{2 m n}=\left(1+\frac{1}{2 n}\right)^{2 m n} \leq 4^{m}
$$

for all sufficiently large n. This again proves that $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$ is bounded for every fixed $x \in \mathbb{R}$. Now it follows from the monotone convergence theorem that $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$ is convergent for every $x \in \mathbb{R}$. This justifies Euler's definition (2). Moreover, the monotonicity of $\left\{a_{n}(x)\right\}_{n=1}^{\infty}$ implies that for every $x \in \mathbb{R} \backslash\{0\}$, the inequality

$$
e^{x}>\left(1+\frac{x}{n}\right)^{n}
$$

holds for all $n>\max (0,-x)$. In particular, this yields $e^{x}>\max (0,1+x)$ for all $x \in \mathbb{R} \backslash\{0\}$, by Bernoulli's inequality. It is also clear from (2) that e^{x} is increasing on \mathbb{R}.

2. The Continuity and Differentiability of e^{x}

Now we derive from (2) the fact that e^{x} is continuous everywhere. Fixing $x_{0} \in \mathbb{R}$ and $\epsilon>0$, we have

$$
\begin{aligned}
e^{x}-e^{x_{0}} & =\lim _{n \rightarrow \infty}\left[\left(1+\frac{x}{n}\right)^{n}-\left(1+\frac{x_{0}}{n}\right)^{n}\right] \\
& =\left(x-x_{0}\right) \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left(1+\frac{x}{n}\right)^{n-1-k}\left(1+\frac{x_{0}}{n}\right)^{k} .
\end{aligned}
$$

If $\left|x-x_{0}\right|<\epsilon$, then

$$
\left(1+\frac{x_{0}-\epsilon}{n}\right)^{n} \leq \frac{1}{n} \sum_{k=0}^{n-1}\left(1+\frac{x}{n}\right)^{n-1-k}\left(1+\frac{x_{0}}{n}\right)^{k} \leq\left(1+\frac{x_{0}+\epsilon}{n}\right)^{n}
$$

for sufficiently large n. It follows that

$$
\begin{equation*}
e^{x_{0}-\epsilon}\left|x-x_{0}\right| \leq\left|e^{x}-e^{x_{0}}\right| \leq e^{x_{0}+\epsilon}\left|x-x_{0}\right| \tag{3}
\end{equation*}
$$

for all $x \in\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$. This proves that e^{x} is continuous at x_{0}. Since $x_{0} \in \mathbb{R}$ is arbitrary, we conclude that e^{x} is continuous on \mathbb{R}.

Now that we have established the continuity of e^{x}, it follows immediately from (3) and the monotonicity of e^{x} that e^{x} is differentiable with

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}>0
$$

for all $x \in \mathbb{R}$. Thus e^{x} is strictly increasing and $e^{x} \in C^{\infty}(\mathbb{R})$. From this the power series expansion (1) of e^{x} follows naturally from Taylor's theorem. If $f(x)$ is a differentiable function satisfying $f^{\prime}(x)=f(x)$, then

$$
\frac{d}{d x}\left(\frac{f(x)}{e^{x}}\right)=\frac{f^{\prime}(x)-f(x)}{e^{x}}=0
$$

for all $x \in \mathbb{R}$. This implies $f(x)=C e^{x}$ for all $x \in \mathbb{R}$, where $C \in \mathbb{R}$ is a constant. Hence e^{x} is the unique solution to the initial value problem

$$
\begin{aligned}
\frac{d}{d x} f(x) & =f(x) \\
f(0) & =1
\end{aligned}
$$

We have thus shown that the definition (2) implies both the power series definition and the differential equation definition of e^{x}. One advantage of this approach is that e^{x} defined by (2) provides an explicit and elementary solution to the initial value problem in consideration, from which the uniqueness follows naturally as we saw above.

3. The Addition Law for e^{x}

The addition law for e^{x} states that $e^{x+y}=e^{x} e^{y}$ for all $x, y \in \mathbb{R}$. It is not immediately clear how the addition law follows from (1), but it can be easily verified once we know e^{x} is differentiable with derivative e^{x}. Indeed, we have by the chain rule that

$$
\frac{d}{d x}\left(e^{c-x} e^{x}\right)=\frac{d}{d x}\left(e^{c-x}\right) e^{x}+e^{c-x} \frac{d}{d x}\left(e^{x}\right)=-e^{c-x} e^{x}+e^{c-x} e^{x}=0
$$

for all $x \in \mathbb{R}$, where $c \in \mathbb{R}$ is a constant. Thus $e^{c-x} e^{x}$ is constant. Since its value at $x=0$ is e^{c}, we find that $e^{c-x} e^{x}=e^{c}$ for all $x, c \in \mathbb{R}$. Taking $c=x+y$ yields the addition law. Without doubt, this classical argument $[1, \S 3.1]$ is neat and elegant.

On the other hand, the author found a way to derive the addition law without using the differentiability of e^{x}. Note first that

$$
e^{x} e^{-x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}\left(1-\frac{x}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{x^{2}}{n^{2}}\right)^{n} .
$$

By Bernoulli's inequality we have

$$
1-\frac{x^{2}}{n} \leq\left(1-\frac{x^{2}}{n^{2}}\right)^{n} \leq 1
$$

for sufficiently large n. It follows that

$$
\lim _{n \rightarrow \infty}\left(1-\frac{x^{2}}{n^{2}}\right)^{n}=1
$$

Hence $e^{x} e^{-x}=1$. More generally, suppose that $x, y \in \mathbb{R}$ are arbitrary. Then

$$
e^{x} e^{y}=\lim _{n \rightarrow \infty}\left(1+\frac{x+y}{n}+\frac{x y}{n^{2}}\right)^{n} .
$$

For any $\epsilon>0$ we have

$$
\left|\frac{x y}{n^{2}}\right|<\frac{\epsilon}{n}
$$

for all sufficiently large n. It follows that

$$
\left(1+\frac{x+y-\epsilon}{n}\right)^{n}<\left(1+\frac{x+y}{n}+\frac{x y}{n^{2}}\right)^{n}<\left(1+\frac{x+y+\epsilon}{n}\right)^{n} .
$$

Thus we have

$$
e^{x+y-\epsilon} \leq e^{x} e^{y} \leq e^{x+y+\epsilon}
$$

Since e^{x} is continuous and $\epsilon>0$ is arbitrary, we have $e^{x} e^{y}=e^{x+y}$.

4. The Natural Logarithm

The natural $\operatorname{logarithm}$, denoted by $\log x$ or $\ln x$, is defined to be the inverse function of e^{x}, namely, $e^{\log x}=x$. It is strictly increasing on its domain $(0,+\infty)$. We now show that $\log x$ is continuous everywhere. Fix $x_{0}>0$ and $0<\epsilon<x_{0}$. As in Section 2, we have

$$
x-x_{0}=\left(\log x-\log x_{0}\right) \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left(1+\frac{\log x}{n}\right)^{n-1-k}\left(1+\frac{\log x_{0}}{n}\right)^{k} .
$$

for all $x>0$. If $\left|x-x_{0}\right|<\epsilon$, then

$$
\left(1+\frac{\log \left(x_{0}-\epsilon\right)}{n}\right)^{n} \leq \frac{1}{n} \sum_{k=0}^{n-1}\left(1+\frac{\log x}{n}\right)^{n-1-k}\left(1+\frac{\log x_{0}}{n}\right)^{k} \leq\left(1+\frac{\log \left(x_{0}+\epsilon\right)}{n}\right)^{n}
$$

for sufficiently large n. Hence

$$
\left|\log x-\log x_{0}\right|\left(x_{0}-\epsilon\right) \leq\left|x-x_{0}\right| \leq\left|\log x-\log x_{0}\right|\left(x_{0}+\epsilon\right)
$$

This shows that $\log x$ is continuous at x_{0}. Hence $\log x$ is continuous on $(0,+\infty)$. Moreover, we have

$$
\frac{1}{x_{0}+\epsilon} \leq \frac{\log x-\log x_{0}}{x-x_{0}} \leq \frac{1}{x_{0}-\epsilon}
$$

for all $x>0$ with $x \neq x_{0}$ and $\left|x-x_{0}\right|<\epsilon$. This implies that $\log x$ is differentiable at x_{0} with

$$
\left.\frac{d}{d x}(\log x)\right|_{x=x_{0}}=\frac{1}{x_{0}}
$$

Hence $\log x$ is differentiable on $(0,+\infty)$ with

$$
\frac{d}{d x}(\log x)=\frac{1}{x} .
$$

Now one can define $a^{x}:=e^{x \log a}$, where $x \in \mathbb{R}$ and $a>0$. Then it is easy to see that $a^{x+y}=a^{x} a^{y}$ and

$$
\left(a^{x}\right)^{y}=e^{y \log a^{x}}=e^{x y \log a}=a^{x y}
$$

for all $x, y \in \mathbb{R}$ and $a>0$.

5. Extension to the Complex Exponential Function e^{z}

Both the power series expansion (1) and the differential equation approach [1, §3.1] can be extended to define the complex exponential function e^{z}. It is thus tempting to generalize (2) as well by defining

$$
\begin{equation*}
e^{z}:=\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n} \tag{4}
\end{equation*}
$$

for $z=x+i y \in \mathbb{C}$. Once the existence of the limit on the right-hand side is established for every $z \in \mathbb{C}$, one can show as in Section 2 that e^{z} defined in this way is continuous on \mathbb{C}, but some extra effort is needed to show that e^{z} is holomorphic everywhere. The author found a way to prove that the sequence $\left\{a_{n}(z)\right\}_{n=1}^{\infty}$ defined by

$$
a_{n}(z):=\left(1+\frac{z}{n}\right)^{n}
$$

converges uniformly on every bounded subset of \mathbb{C}. Let $r>0$ be a constant and let $E \subseteq$ $\{z \in \mathbb{C}:|z| \leq r\}$. For any positive integers $n>m \geq 2$ we have

$$
\left|a_{n}(z)-a_{m}(z)\right| \leq \sum_{k=2}^{m}\left[\binom{n}{k} \frac{1}{n^{k}}-\binom{m}{k} \frac{1}{m^{k}}\right]|z|^{k}+\sum_{k=m+1}^{n}\binom{n}{k} \frac{|z|^{k}}{n^{k}}
$$

It is clear that uniformly for all $z \in E$, we have

$$
\sum_{\sqrt[4]{m}<k \leq m}\left[\binom{n}{k} \frac{1}{n^{k}}-\binom{m}{k} \frac{1}{m^{k}}\right]|z|^{k}+\sum_{k=m+1}^{n}\binom{n}{k} \frac{|z|^{k}}{n^{k}}<\sum_{\sqrt[4]{m}<k \leq n}\binom{n}{k} \frac{r^{k}}{n^{k}}<\sum_{k>\sqrt[4]{m}} \frac{r^{k}}{k!} \rightarrow 0
$$

as $m \rightarrow \infty$. For $2 \leq k \leq \sqrt[4]{m}$, it follows by Bernoulli's inequality that

$$
k!\left[\binom{n}{k} \frac{1}{n^{k}}-\binom{m}{k} \frac{1}{m^{k}}\right]<1-\prod_{l=0}^{k-1}\left(1-\frac{l}{m}\right)<1-\left(1-\frac{k}{m}\right)^{k}<\frac{k^{2}}{m} \leq \frac{1}{\sqrt{m}}
$$

for sufficiently large m. Hence uniformly for all $z \in E$, we have

$$
\sum_{2 \leq k \leq \sqrt[4]{m}}\left[\binom{n}{k} \frac{1}{n^{k}}-\binom{m}{k} \frac{1}{m^{k}}\right]|z|^{k}<\frac{1}{\sqrt{m}} \sum_{k=2}^{\infty} \frac{r^{k}}{k!} \rightarrow 0
$$

as $m \rightarrow \infty$. We have thus shown that $a_{n}(z)-a_{m}(z) \rightarrow 0$ uniformly for all $z \in E$ as $m \rightarrow \infty$. By Cauchy's uniform convergence test, we conclude that $\left\{a_{n}(z)\right\}_{n=1}^{\infty}$ is uniformly convergent on E. This proves that $\left\{a_{n}(z)\right\}_{n=1}^{\infty}$ is uniformly convergent on every bounded subset of \mathbb{C}. By a theorem of Weierstrass [1, Theorem 1, §5], we know that $a_{n}(z)$ converges to an entire function, which we denote by e^{z}, with derivative

$$
\frac{d}{d z}\left(e^{z}\right)=\lim _{n \rightarrow \infty} \frac{d}{d z}\left(1+\frac{z}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n-1}=e^{z}
$$

Having proved this, we obtain immediately the addition law $e^{a+b}=e^{a} e^{b}$ for all $a, b \in \mathbb{C}$. It is also clear that this approach allows one to define the exponential function in an arbitrary unital Banach algebra.

In the argument above, we used the fact that the series

$$
\sum_{n=0}^{\infty} \frac{r^{n}}{n!}
$$

is convergent for every $r \geq 0$. This is almost trivial when $0 \leq r \leq 1$. For $r>1$, the convergence of this series follows from the fact that $n!>r^{2 n}$ for all sufficiently large n. It is worth noting that in comparison to the power series definition of e^{z}, the definition (4) does not give clear clues to Euler's formula $e^{i x}=\cos x+i \sin x$, though it does yield at once $\overline{e^{z}}=e^{\bar{z}}$ and $\left|e^{z}\right|=\sqrt{e^{z} e^{\bar{z}}}=\sqrt{e^{z+\bar{z}}}=e^{x}$ for any $z=x+i y \in \mathbb{C}$. Thus $e^{i y}: \mathbb{R} \rightarrow S^{1}$ defines a homomorphism from \mathbb{R} to the unit circle S^{1}, where both \mathbb{R} and S^{1} are considered as topological groups.

Now we give a proof of Euler's formula $e^{i x}=\cos x+i \sin x$. Let us write

$$
e^{i x}=f(x)+i g(x)
$$

where

$$
\begin{aligned}
& f(x)=\lim _{n \rightarrow \infty} \sum_{0 \leq k \leq n / 2}(-1)^{k}\binom{n}{2 k} \frac{x^{2 k}}{n^{2 k}}, \\
& g(x)=\lim _{n \rightarrow \infty} \sum_{0 \leq k \leq(n-1) / 2}(-1)^{k}\binom{n}{2 k+1} \frac{x^{2 k+1}}{n^{2 k+1}} .
\end{aligned}
$$

Since

$$
\frac{d}{d x}\left(e^{i x}\right)=i e^{i x}=-g(x)+i f(x),
$$

we have $f^{\prime}(x)=-g(x)$ and $g^{\prime}(x)=f(x)$. Therefore, $f(x)$ and $g(x)$ are solutions to the following initial value problem

$$
\begin{array}{ll}
f^{\prime}(x)=-g(x), & g^{\prime}(x)=f(x) \\
f(0)=1, & g(0)=0 .
\end{array}
$$

It follows that $f(x)=\cos x$ and $g(x)=\sin x$. Euler's formula makes it reasonable to define, for all $z \in \mathbb{C}$, the complex trigonometric functions

$$
\begin{aligned}
& \cos z:=\frac{e^{i z}+e^{-i z}}{2}=\lim _{n \rightarrow \infty} \sum_{0 \leq k \leq n / 2}(-1)^{k}\binom{n}{2 k} \frac{z^{2 k}}{n^{2 k}}, \\
& \sin z:=\frac{e^{i z}-e^{-i z}}{2 i}=\lim _{n \rightarrow \infty} \sum_{0 \leq k \leq(n-1) / 2}(-1)^{k}\binom{n}{2 k+1} \frac{z^{2 k+1}}{n^{2 k+1}} .
\end{aligned}
$$

6. Final Comments

There are other alternative ways of defining e^{x}. For instance, it is well known that the set of all positive continuous solutions to the Cauchy functional equation $f(x+y)=f(x) f(y)$ is $\left\{a^{x}: a>0\right\}$. Thus we may define e^{x} to be the unique positive continuous solution to this Cauchy equation with its value at 1 given by e. On the other hand, we may first define $\log x$ to be the the unique nonzero real-valued continuous solution to the Cauchy equation $f(x y)=f(x)+f(y)$ on $(0,+\infty)$ with its value at e given by 1 , and then define e^{x} to be its inverse function. Of course, if one is willing to resort to the theory of integration, then $\log x$ can be defined by the definite integral $\int_{1}^{x} 1 / t d t$, though this is not as elementary as the ones suggested above.

References

[1] L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, 1979.
[2] L. Euler and J. D. Blanton (transl.), Introduction to Analysis of the Infinite, Book I, Springer-Verlag New York, 1988.

Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
Email address: steve.fan.gr@dartmouth.edu

